
Chapter 5 — Virtual Memory 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 5

Virtual Memory

Review: The Memory Hierarchy

Increasing

distance

from the

processor

in access

time.

L1$

L2$

Main Memory

Secondary Memory

Processor

(Relative) size of the memory at each level

Inclusive– what

is in L1$ is a

subset of what

is in L2$ is a

subset of what

is in MM is a

subset of what

is in SM.

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

n Take advantage of the principle of locality to present the

user with as much memory as possible at the fastest

speed and cheapest price.

Chapter 5 — Virtual Memory 2

How is the Hierarchy Managed?

n Registers « cache
n By compiler or programmer.

n Cache « main memory
n By the cache controller hardware.

n Main memory « disks
n By the operating system (virtual memory).
n Virtual to physical address mapping assisted by the

hardware.

Virtual Memory
n Use main memory as a “cache” for secondary memory:

n Allows efficient and safe sharing of memory among
multiple programs.

n Provides the ability to run programs larger than the size of
physical memory.

n Simplifies loading a program for execution by providing for
code relocation (i.e., the code can be loaded anywhere in
main memory).

n Each program is compiled into its own address space –
a “virtual” address space:
n During run-time, each virtual address must be translated

to a physical address - an address in main memory.
n Virtual Memory “block” is called a page.
n Virtual Memory translation “miss” is called a page fault.

Chapter 5 — Virtual Memory 3

Two Programs Sharing Physical Memory
§ A program’s address space is divided into pages - fixed

size - or segments - variable sizes:
§ The starting location of each page (either in main memory or in

secondary memory) is contained in the program’s page table.

Address Translation

Virtual Address (VA)

Page offsetVirtual page number
31 30 . . . 12 11 . . . 0

Page offsetPhysical page number

Physical Address (PA)
29 . . . 12 11 0

Translation

§ A virtual address is translated to a physical address by a
combination of hardware and software.

§ Each memory request first requires an address
translation from the virtual space to the physical space.

Chapter 5 — Virtual Memory 4

Page Fault Penalty
n On page fault, the entire page must be fetched from disk:

n Takes millions of clock cycles.
n Handled by the Operating System.

n Try to minimize page fault rate:
n Fully associative placement of page in main memory.
n Smarter replacement algorithms.

Page Tables
n Stores placement information:

n A Page Table is an array of page table entries, indexed by
virtual page number.

n Page table register points to page in physical memory.
n If page is present in memory:

n PTE stores the physical page number.
n Plus other status bits (referenced, dirty, …).

n If page is not present:
n Page Fault – OS gets involved.

Chapter 5 — Virtual Memory 5

Translation Using a Page Table

Replacement and Writes
n To reduce page fault rate, prefer least-recently used

(LRU) replacement:
n Reference bit in Page-table-entry set to 1 on access to

page.
n Periodically cleared to 0 by OS.
n A page with reference bit = 0 has not been used recently.

n Disk writes take millions of cycles:
n Write-through is impractical so write-back is used.

Chapter 5 — Virtual Memory 6

Address Translation Summary

Physical page
base addr

Main memory

Disk storage

Virtual page #

V
1
1
1
1
1
1
0
1
0
1
0

Page Table
(in main memory)

Offset

Physical page #

Offset

Pa
ge

 ta
bl

e
re

gi
st

er

Virtual Addressing with a Cache
n It takes an extra memory access to translate a Virtual

Address to a Physical Address via the Page Table.

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

§ This makes cache accesses very expensive (if every
access was really two accesses).

§ The hardware fix is to use a Translation Lookaside
Buffer (TLB) – a small cache that keeps track of
recently used address mappings to avoid having to do a
page table lookup.

Chapter 5 — Virtual Memory 7

Fast Translation Using a TLB

n TLB’s work well because access to page tables has good
locality:
n Use a fast cache of Page-Table-Entries within the CPU.

n Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles
for miss, 0.01%–1% miss rate.

n Misses can be handled by hardware or software.

n Just like any other cache, the TLB can be organized as
fully associative, set associative, or direct mapped.

Fast Translation Using a TLB

Chapter 5 — Virtual Memory 8

A TLB in the Memory Hierarchy

n A TLB miss – is it a page fault or merely a TLB miss?
n If the page is loaded into main memory, then the TLB

miss can be handled (in hardware or software) by
loading the translation information from the page table
into the TLB:

n Takes 10’s of cycles to find and load the translation info
into the TLB.

n If the page is not in main memory, then it’s a true page
fault:

n Takes 1,000,000’s of cycles to service a page fault.
n TLB misses are much more frequent than true page

faults.

TLB Event Combinations
TLB Page

Table
Cache Possible? Under what circumstances?

Hit Hit Hit
Hit Hit Miss

Miss Hit Hit
Miss Hit Miss

Miss Miss Miss
Hit Miss Miss/

Hit
Miss Miss Hit

Yes – this is what we want!

Yes – although the page table is not
checked if the TLB hits (Page fault).

Yes – TLB miss, PA in page table.

Yes – TLB miss, PA in page table, but data
not in cache (Page fault).

Yes – page fault (OS allocates new PT entry).
Impossible – TLB cannot Hit if Page Table
misses.

Impossible – data not allowed in cache if
No Page Table entry.

Chapter 5 — Virtual Memory 9

Memory Protection
n Different tasks can share parts of their virtual address

spaces:
n But need to protect against errant access.
n Requires OS assistance.

n Hardware support for OS protection:
n Privileged supervisor mode (aka kernel mode).
n Privileged instructions.
n Page tables and other state information only accessible in

supervisor mode.

Some Virtual Memory Design Parameters

VM Page TLBs
Total size 16,000 to

250,000 words
16 to 512
entries

Total size (KB) 250,000 to
1,000,000,000

0.25 to 16

Block size (B) 4000 to 64,000 4 to 8
Hit time 0.5 to 1

clock cycle
Miss penalty (clocks) 10,000,000 to

100,000,000
10 to 100

Miss rates 0.00001% to
0.0001%

0.01% to
1%

Chapter 5 — Virtual Memory 10

2-Level TLB Organization

Two Machines’ TLB Parameters
Intel Nehalem AMD Barcelona

Address sizes 48 bits (vir); 44 bits (phy) 48 bits (vir); 48 bits (phy)

Page size 4KB 4KB

TLB organization L1 TLB for instructions

and L1 TLB for data per

core; both are 4-way set

assoc.; LRU

L1 ITLB has 128 entries,

L2 DTLB has 64 entries

L2 TLB (unified) is 4-way

set assoc.; LRU

L2 TLB has 512 entries

TLB misses handled in

hardware

L1 TLB for instructions and

L1 TLB for data per core;

both are fully assoc.; LRU

L1 ITLB and DTLB each

have 48 entries

L2 TLB for instructions and

L2 TLB for data per core;

each are 4-way set assoc.;

round robin LRU

Both L2 TLBs have 512

entries

TLB misses handled in

hardware

Chapter 5 — Virtual Memory 11

Two Machines’ TLB Parameters
Intel P4 AMD Opteron

TLB organization 1 TLB for instructions
and 1TLB for data
Both 4-way set
associative
Both use ~LRU
replacement

Both have 128 entries

TLB misses handled in
hardware

2 TLBs for instructions and
2 TLBs for data
Both L1 TLBs fully
associative with ~LRU
replacement
Both L2 TLBs are 4-way set
associative with round-robin
LRU
Both L1 TLBs have 40
entries
Both L2 TLBs have 512
entries
TLB misses handled in
hardware

The Hardware/Software Boundary
n What parts of the virtual to physical address translation

are done by or assisted by the hardware?
n Translation Lookaside Buffer (TLB) that caches the

recent translations:
n TLB access time is part of the cache hit time.
n May allot an extra stage in the pipeline for TLB access.

n Page table storage, fault detection, and updating:
n Page faults result in precise interrupts that are then handled

by the OS.
n Hardware must support Dirty and Reference bits in the

Page Tables.

Chapter 5 — Virtual Memory 12

Summary: Questions for the Memory Hierarchy

n Q1: Where can an entry be placed in the cache?
(Entry placement)

n Q2: How is an entry found if it is in the cache?
(Entry identification)

n Q3: Which entry should be replaced on a miss?
(Entry replacement)

n Q4: What happens on a write?
(Write strategy)

Q1&Q2: Where can an entry be placed/found?

of sets Entries per set
Direct mapped # of entries 1
Set associative (# of entries)/ associativity Associativity (typically

2 to 16)
Fully associative 1 # of entries

Location method # of comparisons
Direct mapped Index 1
Set associative Index the set; compare

set’s tags
Degree of
associativity

Fully associative Compare all entries’ tags # of entries

Chapter 5 — Virtual Memory 13

Q3: Which entry should be replaced on a miss?

n Easy for direct mapped – only one choice.
n Set associative or fully associative:

n Random.
n LRU (Least Recently Used).

n For a 2-way set associative cache, random
replacement has a miss rate about 1.1 times higher
than LRU.

n LRU is too costly to implement for high levels of
associativity (> 4-way) since tracking the usage
information is costly.

Q4: What happens on a write?

n Write-through – The information is written to the entry in
the current memory level and to the entry in the next level
of the memory hierarchy:
n Always combined with a write buffer so write-waits to

next level memory can be eliminated (if the write
buffer doesn’t fill).

n Write-back – The information is written only to the entry
in the current memory level. The modified entry is written
to next level of memory only when it is replaced.
n Need a dirty bit to keep track of whether the entry is

clean or dirty.
n Virtual memory systems always use write-back.

Chapter 5 — Virtual Memory 14

Multilevel On-Chip Caches

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor

3-Level Cache Organization

Intel Nehalem AMD Opteron X4
L1 caches
(per core)

L1 I-cache: 32KB, 64-byte
blocks, 4-way, approx LRU
replacement, hit time n/a
L1 D-cache: 32KB, 64-byte
blocks, 8-way, approx LRU
replacement, write-
back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte
blocks, 2-way, LRU
replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte
blocks, 2-way, LRU
replacement, write-
back/allocate, hit time 9 cycles

L2 unified
cache
(per core)

256KB, 64-byte blocks, 8-way,
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way,
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified
cache
(shared)

8MB, 64-byte blocks, 16-way,
replacement n/a, write-
back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way,
replace block shared by fewest
cores, write-back/allocate, hit
time 32 cycles

n/a: data not available

Chapter 5 — Virtual Memory 15

Summary

n The Principle of Locality:
n Program likely to access a relatively small portion of the

address space at any instant of time:
n Temporal Locality - Locality in Time.
n Spatial Locality - Locality in Space.

n Caches, TLBs, Virtual Memory all understood by
examining how they deal with the four questions:
1. Where can entry be placed?
2. How is entry found?
3. What entry is replaced on miss?
4. How are writes handled?

n Page Tables map virtual address to physical address:
n TLBs are important for fast translation.

