

How is the Hierarchy Managed?

- Registers ↔ cache
 - By compiler or programmer.
- Cache ↔ main memory
 - By the cache controller hardware.
- Main memory ↔ disks
 - By the operating system (virtual memory).
 - Virtual to physical address mapping assisted by the hardware.

Page Fault Penalty

- On page fault, the entire page must be fetched from disk:
 - Takes millions of clock cycles.
 - Handled by the Operating System.
- Try to minimize page fault rate:
 - Fully associative placement of page in main memory.
 - Smarter replacement algorithms.

- A TLB miss is it a page fault or merely a TLB miss?
 - If the page is loaded into main memory, then the TLB miss can be handled (in hardware or software) by loading the translation information from the page table into the TLB:
 - Takes 10's of cycles to find and load the translation info into the TLB.
 - If the page is not in main memory, then it's a true page fault:
 - Takes 1,000,000's of cycles to service a page fault.
- TLB misses are much more frequent than true page faults.

TLB	Page Table	Cache	Possible? Under what circumstances?
Hit	Hit	Hit	Yes – this is what we want!
Hit	Hit	Miss	Yes – although the page table is not checked if the TLB hits (Page fault).
Miss	Hit	Hit	Yes – TLB miss, PA in page table.
Miss	Hit	Miss	Yes – TLB miss, PA in page table, but data not in cache (Page fault).
Miss	Miss	Miss	Yes – page fault (OS allocates new PT entry
Hit	Miss	Miss/ Hit	Impossible – TLB cannot Hit if Page Table misses.
Miss	Miss	Hit	Impossible – data not allowed in cache if No Page Table entry.

Different tasks can share parts of their virtual address spaces:

- But need to protect against errant access.
- Requires OS assistance.
- Hardware support for OS protection:
 - Privileged supervisor mode (aka kernel mode).
 - Privileged instructions.
 - Page tables and other state information only accessible in supervisor mode.

	VM Page	TLBs
Total size	16,000 to 250,000 words	16 to 512 entries
Total size (KB)	250,000 to 1,000,000,000	0.25 to 16
Block size (B)	4000 to 64,000	4 to 8
Hit time		0.5 to 1 clock cycle
Miss penalty (clocks)	10,000,000 to 100,000,000	10 to 100
Miss rates	0.00001% to 0.0001%	0.01% to 1%

Characteristic	ARM Cortex-A8	Intel Core i7
Virtual address	32 bits	48 bits
Physical address	32 bits	44 bits
Page size	Variable: 4, 16, 64 KiB, 1, 16 MiB	Variable: 4 KiB, 2/4 MiB
TLB organization	1 TLB for instructions and 1 TLB for data	1 TLB for instructions and 1 TLB for data per core
	Both TLBs are fully associative, with 32 entries, round robin replacement TLB misses handled in hardware	Both L1 TLBs are four-way set associative, LRU replacement L1 I-TLB has 128 entries for small pages, 7 per thread for large pages L1 D-TLB has 64 entries for small pages, 32 for large pages The L2 TLB is four-way set associative, LRU replacement The L2 TLB has 512 entries
		TLB misses handled in hardware

	Intel Nehalem	AMD Barcelona
Address sizes	48 bits (vir); 44 bits (phy)	48 bits (vir); 48 bits (phy)
Page size	4KB	4KB
TLB organization	L1 TLB for instructions and L1 TLB for data per core; both are 4-way set assoc.; LRU	L1 TLB for instructions and L1 TLB for data per core; both are fully assoc.; LRU L1 ITLB and DTLB each
	L1 ITLB has 128 entries, L2 DTLB has 64 entries	have 48 entries
	L2 TLB (unified) is 4-way set assoc.; LRU L2 TLB has 512 entries	L2 TLB for instructions and L2 TLB for data per core; each are 4-way set assoc.; round robin LRU
	TLB misses handled in	Both L2 TLBs have 512 entries
	hardware	TLB misses handled in hardware

	Intel P4	AMD Opteron
TLB organization	1 TLB for instructions and 1TLB for data	2 TLBs for instructions and 2 TLBs for data
	Both 4-way set associative	Both L1 TLBs fully associative with ~LRU
	Both use ~LRU	replacement
	replacement	Both L2 TLBs are 4-way set associative with round-robin LRU
	Both have 128 entries	Both L1 TLBs have 40 entries
		Both L2 TLBs have 512 entries
	TLB misses handled in hardware	TLB misses handled in hardware

Q1&Q2: Wh	ere can an entry be	e placed/found?
	# of sets	Entries per set
Direct mapped	# of entries	1
Set associative	(# of entries)/ associativity	Associativity (typically 2 to 16)
Fully associative	1	# of entries

	Location method	# of comparisons
Direct mapped	Index	1
Set associative	Index the set; compare set's tags	Degree of associativity
Fully associative	Compare all entries' tags	# of entries

I

	Intel Nehalem	AMD Opteron X4
L1 caches (per core)	L1 I-cache: 32KB, 64-byte blocks, 4-way, approx LRU replacement, hit time n/a	L1 I-cache: 32KB, 64-byte blocks, 2-way, LRU replacement, hit time 3 cycle
	L1 D-cache: 32KB, 64-byte blocks, 8-way, approx LRU replacement, write- back/allocate, hit time n/a	L1 D-cache: 32KB, 64-byte blocks, 2-way, LRU replacement, write- back/allocate, hit time 9 cycle
L2 unified cache (per core)	256KB, 64-byte blocks, 8-way, approx LRU replacement, write- back/allocate, hit time n/a	512KB, 64-byte blocks, 16-w approx LRU replacement, w back/allocate, hit time n/a
L3 unified cache (shared)	8MB, 64-byte blocks, 16-way, replacement n/a, write- back/allocate, hit time n/a	2MB, 64-byte blocks, 32-way replace block shared by fewe cores, write-back/allocate, hi time 32 cycles

Summary

- The Principle of Locality:
 - Program likely to access a relatively small portion of the address space at any instant of time:
 - Temporal Locality Locality in Time.
 - Spatial Locality Locality in Space.
- Caches, TLBs, Virtual Memory all understood by examining how they deal with the four questions:
 - Where can entry be placed?
 - 2. How is entry found?
 - 3. What entry is replaced on miss?
 - 4. How are writes handled?
- Page Tables map virtual address to physical address:
 - TLBs are important for fast translation.